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Current energy use
 context current state  challenges  approaches  conclusions 
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Green design guidance
 context current state  challenges  approaches  conclusions 
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Voluntary “best green” performance of some buildingsVoluntary “best green” performance of some buildings

More complex tools are acceptable

LEED, BREEAM,LEED, BREEAM,
CASBEE, ……CASBEE, ……
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Mandatory minimum energy performance of every buildingMandatory minimum energy performance of every building

pp

Tools must be as simple as possible
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Increasing comfort demands
 context current state  challenges  approaches  conclusions 
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source: www.learn.londonmet.ac.uk
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Indoor quality vs. productivity
 context current state  challenges  approaches  conclusions 
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source: Wargocki, P 2002 "Making the Case For IAQ", ASHRAE IAQ Applications
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Indoor quality vs. health
 context current state  challenges  approaches  conclusions 
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Economic impact:
€ energy€ energy
€ € productivity
€ € € health

/ Building Physics & Systems 5



Need for flexibility + robustness
 context current state  challenges  approaches  conclusions 
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Organizations change continuouslyOrganizations change continuously

source: www.futuresense.com
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Increasing real world complexity
 context current state  challenges  approaches  conclusions 
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Virginia Tech
L hLumenhaus

Solar Decathlon 2009

/ Building Physics & Systems 7
source: High Performing Buildings, spring 2008

Deutsche Bank
Greentowers
2009



Current practice
 context current state  challenges  approaches  conclusions 
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Is to design and operate buildings
to minimize dissatisfactionto minimize dissatisfaction
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Goal and vision for 2050 Eindhoven Energy Institute

 context current state  challenges  approaches  conclusions 

gy

• A sustainable energy positive built environment with indoor• A sustainable energy-positive built environment with indoor 
environmental quality optimized for health, comfort and/or 
productivity, while considering ecological/ climatic 
requirements and economicsrequirements and economics

• Requires a multiscale/ multiphysics and transdisciplinary 
h hi happroach which:

• addresses technological solutions for energy generation, 
storage, distribution and conservation, and

• integrates and optimizes these in design, construction and 
operation of new and existing buildings

So - both new and refurbishment – future projects face huge challenges that seem 
too complex for traditional tools and approaches 
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Traditional tools
 context  current state challenges  approaches  conclusions 

di i li• mono-disciplinary
• solution oriented
• narrow scopenarrow scope
• static
• extreme conditions
• analytical methods (exact 

solution of 
very simplifiedvery simplified
model of reality)

source: www.virtual-north.com
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Simulation tools
 context  current state challenges  approaches  conclusions 

• multi-disciplinary• multi-disciplinary
• problem oriented
• wide(r) scope
• dynamic
• all conditions

i l th d• numerical methods 
(approximate solution of 
realistic model of reality)
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Traditional vs. simulation tools
 context  current state challenges approaches  conclusions 

fundamental 
difference between 

traditional and 
simulation tools is the efo  m h mo e need fosimulation tools is 

in the 
complexitycomplexity

therefor much more need for:
• quality assurance
• knowledge / skills

resources
p yp y

• resources

computer simulation
– often > 10,000 variables

traditional models
– perhaps 10 variables
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Building simulation tools
 context  current state challenges  approaches  conclusions 
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Building simulation use – example
 context  current state challenges  approaches  conclusions 

g p

/ Building Physics & Systems 14



Building simulation use – example
 context  current state challenges  approaches  conclusions 

g p

F l o o r  
l e v e l  

M a x i m u m  s e n s i b l e  
c o o l i n g  l o a d  

S e n s i b l e  c o o l i n g  l o a d  r e d u c t i o n  
d u e  t o  t h e  d o u b l e - s k i n  f a ç a d e  

 C a s e  A  
k W

C a s e  B  
k W

 
W

 
W / m 2  f l o o r

 
%k W k W W  W / m f l o o r %

8 t h  3 . 5 3  3 . 2 9  2 4 0  6  7  
7 t h  3 . 5 1  3 . 2 4  2 7 0  7  8  
6 t h  3 . 5 0  3 . 2 0  3 0 0  8  9  
5 t h  3 . 5 0  3 . 1 4  3 6 0  1 0  1 0  
4 t h 3 4 5 3 0 8 3 7 0 1 0 1 14 t h 3 . 4 5 3 . 0 8 3 7 0  1 0 1 1
3 r d  3 . 3 8  2 . 9 5  4 3 0  1 1  1 3  
2 n d  3 . 1 4  2 . 6 7  4 7 0  1 3  1 5  
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Building simulation use - example
 context  current state challenges  approaches  conclusions 

g p

Passive coolingPassive cooling
• External shading
• High thermal mass

(exposed floor / ceiling ribs)(exposed floor / ceiling, ribs)
Low energy cooling
• All air system
• Night ventilation
• Top cooling
• Heat recoveryHeat recovery
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Building simulation use - example
 context  current state challenges  approaches  conclusions 

g p

• Using calibrated building + 
t d l 10 tisystems model, 10 operation 

scenarios were simulated: 6 
scenarios with various 
combinations of flow rates andcombinations of flow rates and 
control periods, 5 scenarios with 
reduced cooling coil capacity
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Building simulation use - example
 context  current state challenges  approaches  conclusions 
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Source: Wiebe Zoon 
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Building simulation use - current
 context  current state challenges  approaches  conclusions 

g

Mostly for architectural / environmental 
engineering design tasks, very little for 

M-E design
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Building simulation user types
 context  current state challenges  approaches  conclusions 
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Only if mandatory Only if mandatory 
and easy-to-use 

robust tools
Use anything 

including research 
t ltools

Rather no 

Eager for flexible / 
expandable tools

Want easy-to-use 
and robust tools

Rather no 
simulation at all
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Simulation in design …
 context  current state  challenges approaches  conclusions 

g

CIBSE’s guide for future:
1. switch off
2 spread out2. spread out
3. blow away
4. cool when necessary

Trias Energetica:Trias Energetica:
1. reduce demand
2. use sustainable sources
3. use fossil fuel efficiently3. use fossil fuel efficiently
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Simulation in design, but
 context  current state  challenges approaches  conclusions 

g ,

but early 
d i  design 

decisions 
have much 

more impactmore impact

it is used 
mainly for 

design and is rarely 
d

design 
developmentused to 

optimize real 
performance
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Main building simulation challenges
 context  current state  challenges approaches  conclusions 

g g

• Quality assurance> • Quality assurance
− Educate and certify users
− Develop application procedures
− Increase physical validity of tools

=
>

Increase physical validity of tools
• Provide better design support

− Early phase design support
− Multi-scale (construction detail … district level)S

A
.o

rg

( )
− Uncertainty and sensitivity analysis
− Robustness analysis (use/ environmental scenarios, …)
− Optimization under uncertaintyw

w
w

.I
B
PS

− Inverse approach (what if => how to)
− Multi-physics (power flow modeling, …)
− Integrate in design process (BIM, process modeling, …)  
  
  
  
  
 

w

• Building operation and management support
− Accurate in-use energy consumption prediction
− Model predictive (supervisory mimo) control<

=
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Expanding simulation scope
 context  current state  challenges  approaches conclusions 

p g p

UCL Belgium 

to earlier in the design process by:
• uncertainty analysis
• sensitivity analysissensitivity analysis

• multi-objective decision making
• optimization under uncertainty• optimization under uncertaintyGazi Univ. Turkey 
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Uncertainty analysis (1984 technology)

 context  current state  challenges  approaches conclusions 
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Variability due to (stochastic) 
t b h ioccupant behaviour

in terms of Tset, Qint, ACR
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Uncertainty & sensitivity analysis
 context  current state  challenges  approaches conclusions 

y y y
Variability due to physical parameter uncertainty

Gl t
Glass Percent.

  Sensitivity of design parameter
on uncertainty of cooling demand

50 - 100%

Wall Insul.
Floor A rea

Build. M ass
Glass system

48-72m 2

2.5 - 4.0m 2K/W

110 - 295kg/m 2

therm. Perf. low -high

-0.6-0.5-0.4 -0.3-0.2-0.10.0 0.10.2 0.30.4 0.50.6 0.70.8
Roof Insul.
Wall Insul.

Stand. regression coefficient (SRC)

2.5  4.0m K/W
2.5 - 4.0m 2K/W

-0.8
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Uncertainty & robustness analysis
 context  current state  challenges  approaches conclusions 
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Uncertainty & robustness analysis
 context  current state  challenges  approaches conclusions 
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Uncertainty & optimization
 context  current state  challenges  approaches conclusions 
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After optimization
Before optimization 
(initial population) After optimization unfavorable region

w.r.t. energy consumption

(initial population)

unfavorable region
w.r.t. thermal comfort

Linear trade‐offWide uncertainty 
margin for unoptimized
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margin for unoptimized
solutions



Co-simulation (by run-time coupling)

 context  current state  challenges  approaches conclusions 
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h iresearch issues:
• which data
• how exchange
• what frequency

• speed
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• stability
• accuracy



Whole building heat, air & moisture
 context  current state  challenges  approaches conclusions 

g ,

deliverables:
• prototype softwarep yp
• coupling procedure
• coupling validation
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HAMPE – case study
 context  current state  challenges  approaches conclusions 

y

Model

Volume: 10 (m) *10 (m) * 3.33 (m)

12 surfaces

Duration = 1 day (31st of March)

BES

2 time steps per hour

Location: Brussels

Free floating temperature

CFD
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CFD



HAMPE – case study
 context  current state  challenges  approaches conclusions 
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room temperature (external coupling)
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Source: Daniel Costola + Mohammad Mirsadeghi 



Application oriented
 context  current state  challenges  approaches conclusions 

pp

CVUT Prague 

CVUT Prague 
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Identifies shortcomings and barriers to be
addressed in our more general research



Conclusions
 context  current state  challenges  approaches  conclusions

B ildi i l ti h l i “1970”• Building simulation has come a long way since “1970”
• Very promising technology for addressing major 

technical “ASHRAE / AIA” challenges during nexttechnical ASHRAE / AIA” challenges during next 
decades

• Needs improvements in terms of:• Needs improvements in terms of:
• Quality assurance (tools, users & use)
• Usefulness and integration in/ for performance basedUsefulness and integration in/ for performance based

design and operation of buildings
• Opportunities for cooperation ASHRAE / AIA / IBPSApp p

• R&D, Best Practice Examples, Guidebooks, Courses,
Tool Accreditation, User Certification, …….
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My main interests while at LBNL-EETD
 context  current state  challenges  approaches  conclusions

y

C i l ti i BCVT + FMI• Co-simulation using BCVT + FMI
• Modelica

U F ilit f N t Z d L E B ildi• User Facility for Net-Zero and Low Energy Buildings
• LearnHVAC
• Cooperative research proposals

• EU / NL / US
IEA A / IBPSA T k l• IEA Annex / IBPSA Task proposal

• …
• …
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Thank you !y
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